Can a CNN Recognize Catalan Diet?
نویسندگان
چکیده
Nowadays, we can find several diseases related to the unhealthy diet habits of the population, such as diabetes, obesity, anemia, bulimia and anorexia. In many cases, these diseases are related to the food consumption of people. Mediterranean diet is scientifically known as a healthy diet that helps to prevent many metabolic diseases. In particular, our work focuses on the recognition of Mediterranean food and dishes. The development of this methodology would allow to analise the daily habits of users with wearable cameras, within the topic of lifelogging. By using automatic mechanisms we could build an objective tool for the analysis of the patient’s behaviour, allowing specialists to discover unhealthy food patterns and understand the user’s lifestyle. With the aim to automatically recognize a complete diet, we introduce a challenging multi-labeled dataset related to Mediterranean diet called FoodCAT. The first type of label provided consists of 115 food classes with an average of 400 images per dish, and the second one consists of 12 food categories with an average of 3800 pictures per class. This dataset will serve as a basis for the development of automatic diet recognition. In this context, deep learning and more specifically, Convolutional Neural Networks (CNNs), currently are state-of-the-art methods for automatic food recognition. In our work, we compare several architectures for image classification, with the purpose of diet recognition. Applying the best model for recognising food categories, we achieve a top-1 accuracy of 72.29%, and top-5 of 97.07%. In a complete diet recognition of dishes from Mediterranean diet, enlarged with the Food-101 dataset for international dishes recognition, we achieve a top-1 accuracy of 68.07%, and top-5 of 89.53%, for a total of 115+101 food classes.
منابع مشابه
Diet quality of a population sample from coastal north-east Spain evaluated by a Mediterranean adaptation of the diet quality index (DQI).
OBJECTIVE To assess the adherence to the Mediterranean dietary pattern in the population from a coastal region from north-east Spain and its relationship to diseases, applying the Mediterranean Diet Quality Index (M-DQI) validated by the use of several biomarkers. DESIGN Cross-sectional nutrition survey. SETTING Population-based random sample derived from the Catalan Nutrition Survey. SUB...
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملOutput Characteristics of Three-Layer Cellular Neural Networks Processing Color Images
Cellular Neural Networks (CNN) [1] were introduced by Chua and Yang in 1988. The idea of the CNN was inspired from the architecture of the cellular automata and the neural networks. Unlike the conventional neural networks, the CNN has local connectivity property. Since the structure of the CNN resembles the structure of animals’ retina, the CNN can be used for various image processing applicati...
متن کاملDimensional Sentiment Analysis Using a Regional CNN-LSTM Model
Dimensional sentiment analysis aims to recognize continuous numerical values in multiple dimensions such as the valencearousal (VA) space. Compared to the categorical approach that focuses on sentiment classification such as binary classification (i.e., positive and negative), the dimensional approach can provide more fine-grained sentiment analysis. This study proposes a regional CNN-LSTM mode...
متن کاملTinkering Under the Hood: Interactive Zero-Shot Learning with Net Surgery
We consider the task of visual net surgery, in which a CNN can be reconfigured without extra data to recognize novel concepts that may be omitted from the training set. While most prior work make use of linguistic cues for such ”zero-shot” learning, we do so by using a pictorial language representation of the training set, implicitly learned by a CNN, to generalize to new classes. To this end, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1607.08811 شماره
صفحات -
تاریخ انتشار 2016